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Abstract

In this report we will design and implement a cluster of cooperating LiABs.

The motivation for this is an attempt to increase the reliability of the routing

plane in a core router. This will be done through the development of a printed

circuit board suitable for connecting 4 LiABs to a Xilinx FPGA. The cluster

of 3 LiABs is connected through a queue to the fourth LiAB emulating the

actual router forwarding plane. The firmware developed for this connection

is described. Finally, programming and usage of the design is elaborated.
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Control
Plane

Packet
switch

Figure 1: Division of routing plane and forwarding plane in a router.

1 Introduction

This project aims at designing a platform for the development of a reliable router
control plane. It thus attempts to increase the availability and reliability of a node
in the network.

Though packet switched nets (like the internet) was designed to be very resilliant
towards failures of a single node, telcos do not like backbone routers dropping out as
this may have very unfortunate side-effects such as loss of traffic. This is emphazised
in the survey performed by BTExact, a part of British Telecom responsible for
research. Their survey ([1] and [2]) indicated that the main consideration for telcos
were reliability, not cost. Serveral companies have provided the telcos with solutions
for high availability routing systems, such as Avici’s NSR. In their whitepaper [3]
Avici lists serveral different approaches to increasing availability of routers. Of the
suggested methods only one is described as feasible and the design suggested is
persued in this report.

1.1 Problem

As shown in figure 1, a router is considered two distinct layers - a routing layer
and a packet switch/forwarder. This division is supported by contemporary router
architectures as described in [6] and [11], where high-speed interconnects between
the line cards and forwarding engines are used. This design has the added advan-
tage that even though the routing layer should fail (deliberately or accidentially),
the packet switch can continue operation (shown in [20]). As all complex software,
software for the routing plane is likely to be bug-ridden and must therefore some-
times be updated or patched and might even crash. This is a cause for much of
the downtime in the current routers. While the routing layer is unavailable due to
updates or crashes, the router is not able to respond to routing messages in the
network and update the routing tables accordingly. Not transmitting the heartbeat
messages used in most internal routing protocols [7] [10] or keeping the TCP con-
nection used in BGP [8] might cause eg. route-flapping, where the lowest-cost route
moves to another route temporarely, only to be swapped immediately back to the
original route when the routing plane of the affected router becomes available again.
Resolving this problem in the protocol has been suggested, such as ”I’ll-be-back”
messages in OSPF [4], but unfortunally, this would only solve expected outages in
case of eg. software updates - not a random crash. A graceful restart mechanism
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such as the one described in [11], would also allow continue usage of the forwarding
plane of the router and facilitate a rapid restart of the routing plane.

The IBB extension suggested in [4] solves many problems related to expected
outages by continuing to use the router that has announced an outage of the routing
plane while still able to continue forwarding packets. The extension considers what
messages related to routing decisions it might have been lost in the routing plane.
This way, the IBB extension tries to avoid loops and black holes by considering what
effects the lack of updates to the link state database used in OSPF, has. One major
problem remains in relation to this approach - the routing layer must announce
its expected outage to the surrounding routers. Hardware failures can thus not be
handled gracefully by this approach. It also requires all vendors to support these
protocol extensions [3], a situation not likely to be resolved soon. The advantage of
this solution is that it can be solved entirely in software and needs no extra hardware
in order to support it. This, in my opinion, has the unfortunate side-effect that it
requires changes to the protocol, which is unlikely to happen soon in an autonomous
network such as the Internet.

In the other trench we have full hardware redundancy. This solution works
by using serveral routing processors, most likely solving the same task so we have
serveral answers we can compare in order to ensure the correct answer is returned.
This solution, though, is costly in terms of hardware, that must be specially de-
veloped to support this majority voting principle. This is not as much an issue in
relation to telcos as they are willing to pay the needed extra price to obtain relia-
bility and scalability [1]. If these routing engines run in lock-step (same algorithm,
same instruction stream, at almost same point), we do not solve problems relating
to software errors as the routing engines fail at the exact same time. This was most
noteably show in the case of Ariane 5, that had fully redundant hardware but lacked
software redundancy.

This problem could be relieved by using n-version programming. If we ask n
independant department to develop n independant solutions to the requirements put
forward, they are likely to come up with n somewhat different solution (by ensuring
that they to not communicate extensively) and it is though unlikely that the same
errors exists in all n different versions. This protects us against software failures
by also having a redundant software running. The disadvantage is of course price.
It is widely known that the most expensive part of developing a hardware-software
solution is the software, so n ’plifying this cost is certain to be very expensive.

A more cost-consious solution to alliveate the possibility of crashes in the soft-
ware is checkpointing. By checking results before committing them to the softwares
states and roll-back to the last known good state of the software, some protec-
tion against software errors are possible. This also allows us to perform very rapid
restarts of the system as we already have the state of the program ready. The
UNIX fork() actually resembles this somewhat though it does not allow us to in-
spect the old state of the process before the fork. This technique is implementet in
[27] and a performance-increasing implementation of it has been proposed in [28].
The problem with this approach is that it does not really have the redundancy
of the previously mentioned method - it only allows very rapid restarts in case of
crashes. Errors in hardware is not handled by this approach.

Unlike OSPF and RIP, that uses UDP messages to transfer routing information,
BGP uses a TCP connection. During the routing engine, the connection may time-
out causing the other router to consider this router failed. This poses a problem as
this BGP router will refrain from using the failed gateway and thus might be forced
to use suboptimal routes. As BGP is often used in telcos back-bone routers, this
suggest to us we need a way to seamlessly ensure that the other end of the BGP
connection never discovers a temporary outage of our control plane.
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Figure 2: The concept of a cluster with a quarentine queue towards a final LiAB
acting as the packet switch

2 Concept

The basic concept of the design is shown in figure 2, where a cluster of 3 LiABs will
function as the routing plane connected to the packet switch through a quarentine
queue. In the quarentine queue, the messages directed at the packet switch must
either be accepted by at least two LiABs or pass a time-out period without being
flagged as defect by two LiABs. This is somewhat similar to the NSR solution
by Avici [3], though even more closely knitted together. One of the LiABs is the
elected master of the cluster and is hence the one responsible for answering all
incoming requests. The two slaves in the system works both as hot stand-by’s
ready to take over the role as master, and as monitors for the correct functioning
of elected master. This solution is not fully redundant and assumes the correct
function of a cluster coordinator. As this most likely is implemented in hardware,
failing hardware will be the most probable cause of complete system failure. By
designing the hardware as simple and robust as possible, it is easier to debug and
verify. The default behaviour of letting a message pass the quarentine queue after
a given period is chosen to assure the cluster will keep functioning, but slowly, with
only one LiAB running. If two LiABs are running, the elected master is assumed
to be working correctly and, if the other LiAB agrees, the functioning will be fast.
With three LiABs running, it is able to do full triple-voted functioning where the
output from the cluster is assured by at least two LiABs to be correct.

This design should allow the outside of the cluster to communicate to a very
reliable virtual system and, as the clustered machines are so closely knitted together,
the cluster should be able to hand-over a TCP-connection between a former master
and a slave without terminating it. This so-called TCP hand-over is one of the major
goal of the cluster and is especially important for BGP-based routing solutions
such as those most commonly found in back-bone routers. The state of each LiAB
must be somehow communicated between the machines in the cluster without being
forwarded to the packet switch.

As I do not have access to a packet switching network, the fourth LiAB depicted
in figure 2 must work as an emulator for the actual hardware packet switch and be
able to inject messages into our triple-redundant routing engine.

In order to support this cluster, I will attempt to design a simple PCB, described
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in section 3, suitable for connecting a cluster of LiABs (Linux-in-A-Box [22]) to-
gether using a smart bus implemented inside a Xilinx FPGA. The choice of a bus
as the interconnect will be explaned in section 4. To interface towards the FPGA, a
driver closely knitted to the firmware uploaded to the FPGA, needs to be developed
- the requirements for this driver is described in section 5.
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Figure 3: Division of schematic in FUBs - the 8 fubs comprising the main level of
the schematic.

3 PCB

The purpose of the PCB is to connect 4 LiABs to an FPGA containing a core
capable of sorting messages. Three LiABs comprise the cluster being the reliable
control plane and the last LiAB emulates the packet switch. Therefore, the PCB
consists of quite few components needed to achieve this simple interconnect purpose
and a couple of blinkenlichten [29].

The schematic has on purpose been kept simple as to reduce the likelihood
of a failure on this part - if a fully redundant system where to be implemented,
the complexity of the PCB would increase substantially as the number of separate
FPGAs must be increased to 4 to allow for majority-votes among the FPGAs.
Instead, I have chosen to focus on making the contents of the FPGA sufficiently
robust to ensure a reliable system.

The tool from Mentor Graphics, DxDesigner, operates with FUBs (FUnction
Blocks), and as seen on the overview in fig. 3, the schematic consist of 8 major
blocks, 4 LiAB connectors, an FPGA, a clock-generator, a group of HP connectors
for a logic analyzer, a reset pulse generator and a power FUB. To ease the PCB
routing of signals, I grouped the signals in busses where appropriate, but in order
to fill the fixed size busses (8-bits or 16-bits), I took signals that should be only
somewhat related to each other and grouped them in a bus, eg. CS0-CS2 and
A0-A9.

3.1 STIK1, STIK2, STIK3 and STIK4

These four FUBs contain the LiAB connectors. Address bus consists of A0-A9 and
CS0, CS1 and CS2 plus IORD, IOWR and ALE. These signals are all related to
the addressing of the output. The 16 data pins and 16 I/O pins was placed in
two busses, and finally the remaining signals was grouped in the CTRL bus. A
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68Ω resistor was placed on each input pin in order to protect the FPGA against
undesirable spikes.

3.2 HP CONNECTORS

The design contains connectors for 4 HP connectors. Each HP connector has 16
bits of data and 2 clocks, one of which is connected to the on-board clock generator
and the other one is connected to the FPGA to allow the FPGA generate a clock
signal for the HP connector.

The HP connector contains a pin called Vcc; this pin is not connected as it is
a power source from the HP analyzer itself to possible on-board electronics. In our
case, connecting it would have caused fault current damaging the PCB.

3.3 RESET

The reset circuit is a simple pulse generator making a pulse of a given length to
the output. This was a design taken from another project called ”Switch Emulator
Board” by JH and YY.

3.4 POWER

Quite boring as it just contain the connectors coupled to a large number of capacitors
for decoupling the power and assuring a constant supply to the quite power-hungry
FPGA.

The board uses three voltage levels, 5V, 3.3V and 1.8V, each has an input
terminal.

I must admit, though, that I probably overdid the decoupling according to our
engineer, as I basicly had 1 capacitor for each Vcc pin on the FPGA.

3.5 CLKGEN

Hidden within the FPGA is a FUB containing the clock generator and a clock
distribution chip CDC-VF-2405. This low skew driver chip is used to generate 9
amplified copies, of which 5 are used, of the on-board XTAL 100MHz clock. It also
contains a jumper to allow an external clock to be fed into the board instead. The
design includes a SMA connector, but the connector was never fitted on the board.

When the board was produced, it turned out I had overlooked an enable pin on
the CDC chip, but luckily, a Vcc pin was located right next to it so a small solder
fixed this little error.

3.6 FPGA

3.6.1 Configuration

The configuration of the FPGA will be done by two XC18V04 chips [13] placed in
cascade, together able to hold 8Mb configuration data; more than the 6.3M needed
for the XCV812E [12]. I originally intended to use the parallel configuration of
the FPGA as this method is the fastest for configuring the FPGA, but this idea
was rejected by Brian M. S. as it would require an entire bus to be routed from
the XCV18 chips to the FPGA. I was recommended the Master Serial programming
mode instead, where the FPGA generates a clock-signal to the EEPROMs to use for
sending data. This programming technique has previously been used on COM with
positive results and requires far less connections. The programming of the FPGA
can be monitored on an attached LED, which will be lighted when the programming
has been completed. Two switches has also been added to restart programming
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and to force the FPGA to restart its initialization process. Additionally, a JTAG
interface has been added to the schematic to allow reprogramming of the EEPROMs
embedded in the XC18V chips. The JTAG chain also covers the FPGA and can
be used to configure only the FPGA with a test configuration before the final
configuration is ready.

3.6.2 Switches and LEDs

A number of LEDs has been placed on the design in order to be able to output
information from the FPGA. LEDs can usually be placed either so the device drains
power through the LEDs or sources power through them. I choose the former
method with a 330Ω resistor as it is usually easier for a chip to sink a current than
to source it. This has the odd effect, though, that the LEDs will light when a low
level is output and remain dark if a high level is put on the output - obviously
contrary to the intuitive use. Unfortunally, this turned out to have the unfortunate
effect that the diodes was turned the opposite way on the final board.

The board also contains 12 DIP switches, 3 of which are used to set the pro-
gramming mode of the FPGA. These three switches must be placed according to the
table on pg. 12-13 in [12], ”000” in master serial programming mode if EEPROMs
are used, ”001” if the JTAG interface is used for configuration. All switches have
weak pull-ups using 4K7 resistors.

3.6.3 Clock inputs

The FPGA features 4 clock-domains, 3 of which has been attached to LiAB 0-
2, the fourth has been attached to the fixed 100MHz clock source on the board.
Originally, the intention was to split clock domains between the different LiABs
over the embedded BlockRAM and clock the internal bus at 100MHz, but this
turned out to be impossible as the Place&Route tool did not allow us to use this
many clocks and the 100MHz was thus chosen for the entire FPGA design.

3.6.4 Pin mappings

I had originally routed the signals logically close to each other without regard to
the actual package pins - this turned out to yield some problems when the PCB
was layouted - therefore, Brian chose to move some of the busses to allow a smaller
layout on the PCB. Seen from the inside of the FPGA, this does not pose any
problems as it is only a change to the pin mappings.

The pin mappings was written in a CSV (Comma-Separated-Values) in a simple
text file containing pin name and location on the package. I never made DxDesigner
export the schematics pin mappings (couldn’t make BoardLink work), so it was
manually entered. Each logical function was placed in its own file (see appendix
A) and was verified as wrong pin mappings could cause difficult-to-find bugs and
maybe even damage to the board. This actually did turn up a couple of typos. It
later turned out that Xilinx ISE actually preferred to receive input as an UCF file
with lines in the format:

NET "xx" LOC = "xx" ;

A small Perl-script shown in figure 4 was made to convert the CSV files to UCF
format - and assuming the Perl script did not touch the values, the UCF files need
not be verified again.

Note that the script actually throws pin-directions aways - this is because the
pin names must match the entity ports in the VHDL code, and the entity ports
already has directions.
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while ($l = <STDIN>) {

if ($l =~ m/^([A-Za-z]+[0-9]+), ?(.+), ?(InOut|Input|Output)/) {

($loc,$net,$dir) = (uc $1,$2,$3);

$net =~ s/</\(/g;

$net =~ s/>/\)/g;

print "NET \"$net\" LOC = \"$loc\" ;\n";

}

}

Figure 4: Perl script to translate CSV files to something.

An important other thing to note is that the UCF files may not contain nets
that are not used. Usually, this would not be a problem if your entities declare the
ports, unless the synthesis-tool removes the unused pins. For the fore-mentioned
reason it is important to note that # denotes a comment in the UCF files.

3.7 Component placements

In figure 5 we see an overview of the produced PCB. Power is supplied in J3 (5.0v),
J4 (3.3v) and J5 (1.8v). U2-U5 is the connectors to the HP Aglient logic analyzer,
whose 16 bits can also be used for other purposes. U1,U7,U8 and U9 is the four
LiAB connectors. J8 is the Multilinx JTAG connector used to program the board.
U10 and U11 is the two EEPROMs to store configuration data in. There is no need
to use these two EEPROMs when trying out FPGA configurations - configurations
of the FPGA can be programmed directly into the FPGA (U12). The mode bits
controlled by S1’s bit 1-3 must be set according to [12].

To recapitulate the important components on the board, they are listed in table
1. The original PCB print can be found in appendix B. All component placements,
layout/routing and assembly of the board was performed by Brian M. Sørensen.

3.8 Summary

The PCB has been produced, is ready and has passed initial test - the FPGA can
be programmed using the JTAG chain as was intended. The PCB has the layout
depicted in a reduced version in figure 5. The main change between the actual
pcb and the reduced overview is the removal of resistors and capacitors to improve
readability (the original can be found in appendix B. It should, though, still be
able to navigate around the board - note the position of the power supplies.
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10 3 PCB

Ident Purpose

J1 reduced JTAG input
J8 multilinx JTAG input (connect to PC)
D49 program done LED

J3 5.0v Vcc supply
J4 3.3v Vcc supply
J5 1.8v Vcc supply

J7 clock source select (SMA-connector or on-board clock)

U3 HP0 connector
U5 HP1 connector
U2 HP2 connector
U4 HP3 connector

U1 LiAB-0
U7 LiAB-1
U8 LiAB-2
U9 LiAB-3

SW1 init
SW2 reprogram
SW3 reset signal to FPGA

S1(1-3) mode bits

Table 1: The most important components on the PCB.
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4 Firmware

The FPGAs purpose is to act as an intelligent interconnect between the LiABs. It
could be configured either as a switch, in which case it should not do anything but
move data around, or, as we decided early in the design process, it should have
larger responsibilities.

Several different designs of the interconnect was considered. The requirements
to the interconnect is described in the first sections, followed by designs of the in-
terconnect. The bus-based design was selected and optimized. The implementation
proved to be very time-consuming even though the bus-based design was chosen
for its simplicity. The problem was an unexpected delay in the on-chip routing of
signals consuming up to 80% of the worst-delay path. The time-consuming imple-
mentation therefore took away time required for the development of the driver and
the modified TCP stack along with the test-case. These are hence only described
as would-be designs.

Conventions used in the diagrams:

� blocks with round corners denotes combinatorial functions

� large squares are blocks containg storage, eg. latches or registers

� signal ”clk” is implicitly used whenever squares with unconnected triangles
are used1.

� All state diagrams in this section are clock driven - if no conditions are at-
tached to a transition, it will be taken on next clock, otherwise, it will be
taken on a clock where conditions are met.

Though very advanced fault-tolerant designs are possible, such as those de-
scribed by [18] and [17], the techniques will not be pursued as the design is supposed
to be placed in shielded environments and the techniques described are most suited
for no-access environments such as space applications.

4.1 Messages

As mentioned in section 2, the design uses a quarantine queue, which allows the
two non-master LiABs to vote against a message sent from the third LiAB. This is
accomplished by allowing a LiAB to either sent a pass or a stop message regarding
a message directed to the packet switching matrix. The pass and stop messages
will be very small as they only need to tell us which message they refer to. As the
PS must also be allowed to send data to the LiABs (otherwise, the design would
be pointless), we need a total of 4 messages for quarantine handling of messages -
to-PS, from-PS, pass and stop.

In order to allow our cluster to maintain a consistent state between the 3 LiABs
composing the cluster, we must be allowed to transmit messages between the three
LiABs that does not propagate to the PS. When a LiAB has been IPLed, it will not
have a consistent state, and instead of leaving it unable to join the cluster until it
has collected enough information to be in sync with the cluster, it must be allowed
to request a state dump from the current master. We therefore need three messages
regarding state updates, requests and dumps.

To allow us to consider the current state of the cluster, we must know which
LiABs are currently available. There are at least two ways of assuring a LiAB is
alive - one is to query it to see if it responds, the other is to require it to tell us it is

1As I realized LeonardoSpectrum insist we use global clock-buffers for all clocks and only 4
GCB are available, it was irrelevant to do a multi-clock-domain design.
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alive at periodic intervals. If you choose the latter approach, these messages should
of course be generated by the software processing messages on the LiABs, not by
some timer interrupt on the LiAB! I have chosen to use a heartbeat approach to the
system as this is easiest to implement. If the heartbeat is absent for an appropriate
period of time, the LiAB is considered crashed, and if it is the master, another
LiAB is elected as the master of the cluster.

These considerations lead us to summarize the following messages that must be
directed at either the cluster, the PS or the FPGA itself:

� FROM-PS
message from the packet switch to the control plane.

� TO-PS
message from the control plane to the packet switch.

� PASS
message regarding another message, the message should be passed.

� STOP
message regarding a faulty message - the message should be dropped from the
quarantine queue.

� HEARTBEAT
”I’m alive” message from a LiAB in the cluster.

� STATE-REQ
”I need to know your state”, an IPLed LiAB need the cluster state.

� STATE-DUMP
Message containing state.

� STATE-UPD
”change this in your states” message to the cluster.

To ease the quarantine queues work with sorting data, I decided that the first
few octets of data in the message must be directed at the FPGA itself. Also, it gives
us the advantage that we know what data a message contains before we complete
the transmission of data and we can thus start processing data even before it is
completely transferred.

4.2 Cells

Early in the process, it was decided that moving fixed-size cells around between the
LiABs would be easiest to implement. The size of these fixed cells was dictated by
the available hardware - namely the Xilinx XCV812Es on-board 4KiBit BlockRAM.
Originally, the intention was to make the cells 1024 octets as this would be somewhat
above a common MTU on the Internet of 576 bytes [5] (X.25). Obviously, a cell size
of 1024 octets is below the Ethernets 1536 octets MTU [6], but 1536 was considered
an annoying number to implement as it was not a power of 2. To include Ethernets
MTU, we could have chosen 2048 octets, but these large cells would have caused an
unnecessary large overhead when transmitting very small messages as an entire cell
must be filled each time. I also considered very small cells like ATM in the range
of 64 octets, but decided that this would cause IP to be forced to fragment unless
the interconnect was connection-based like ATM. It was therefore discarded and a
cell-size of 512 octets matching the BlockRAM was chosen.

Cells also gives the advantage that we know the size of the message transmitted
and can thus schedule a time-slice which will always contain an entire message, no
more, no less.
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Figure 6: Bus overview.
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Figure 7: Ring example.

4.3 Interconnects

The interconnect in the FPGA must be quite robust and preferably simple to ease
debugging and reduce the likelihood of failures in the hardware. It must also be
capable of dealing with malfunctioning LiABs intending to force the FPGA to con-
gest by outputting immense amounts of faulty cells and the interconnect should
therefore have a static bandwidth allocation and/or early cell sorting.

It is also important to note that many transmissions in the fabric will be of a
broadcast nature - namely the masters transmission to the packet switch, state up-
dates and the packet switch to the master. Hence, a fabric suitable for broadcasting
should be chosen as it is easier to sort away information than to obtain it.

4.3.1 Bus

The bus is a well-known interconnect with certain bandwidth-limiting properties as
all connected units must content for the common medium and we therefore need
some sort of MAC2 algorithm to ensure the messages get transferred. The Ethernet
originally used this topology and a CDMA/CD3 [5], which unfortunally in our
design has the lack of certainty of transmission [5] - especially if a LiAB should
malfunction and output defect cells. This could be easily handled by instead using
a TDM4 MAC algorithm. This MAC algorithm is also very easy to implement.

4.3.2 Ring

The ring topology was inspired by the large amount of broadcast transmissions.
By using a ring to interconnect all LiABs, they would inherently have access to all
data transmitted through the interconnect. The advantage of this interconnect is
the ease at which the design supports retries. It will continue to attempt to deliver
the cell to a given destination until the cell is removed from the ring. This is also

2Medium Access Control
3Carrier-Detect-Multiple-Access / Collision-Detect
4Time-Division Multiplexing
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Figure 8: Crossbar overview.

the rings disadvantage - it does not preserve order of cells and a cell could be stuck
in the ring unless a time-to-live mechanism is implemented.

4.3.3 Cross-bar switch

The crossbar switch is highly optimized for point-to-point transfers with a lot of
distributed buffers. It has a very high throughput as described in [19], but is
unsuited for our design as we need to be able to sort cells in a quarantine queue.
This means that we have to have an additional set of buffers below the matrix. [20]
describes an algorithm to improve the reliability of the cross-bar switch, but it is
still not particularly suited for the broadcast transmissions we need.

Like the crossbar, the Kaleidoscope is optimized for point-to-point, even more
than the crossbar. Where the crossbar could facilitate our need to broadcast most
of the traffic, the kaleidoscope approach does not facilitate this feature easily. In our
design, the kaleidoscope does not achieve some of the desirable advantages and is
thus abandoned. When working with only 4 LiABs to interconnect, the kaleidoscope
actually more resembles a ring. Fault-tolerant designs based on toruses, such as
described in [21], are best suited for larger interconnects than our target of just 4
units and is considered too complex to gain anything from.

4.3.4 Interconnect decision

From these different approaches, we consider the bus most appropriate since it is
easy to implement, easy to extend and reliable with TDM. The problem is the major
SPOF - the unit responsible for sharing the bus. If kept sufficiently simple the unit
should have a high MTBF.

The bus width has been selected to be 16 bits, as the dual-port Xilinx RAMB4
is available only in the finite set of sizes mentioned in table 2 taken from [13] pp.
25:

Of the mentioned available Xilinx primitives, RAMB4 S16 S16 was selected as
that would provide the widest internal bus and match the writes from the LiAB.
The choice of a dual-port entity was motivated by the possibility of doing clock
desync in the RAM block, but as mentioned later, this turned out to be impractical
(see 4.5).

4.4 Internal protocol

As we now have decided to use a TDM bus and transmit cells of 512 octets on
a 16-bit bus, its time to determine the exact layout of the cells. The cell layout
is partly dictated by the LiAB - we will use the term word to describe 16 bits as
the LiAB will perform transfers in words. The first word (the cell header) of the
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Primitive Port A width Port B width

RAMB4 S1 1 -
RAMB4 S1 S1 1 1
RAMB4 S1 S2 1 2
RAMB4 S1 S4 1 4
RAMB4 S1 S8 1 8
RAMB4 S1 S16 1 16
RAMB4 S2 2 -
RAMB4 S2 S2 2 1
RAMB4 S2 S4 2 4
RAMB4 S2 S8 2 8
RAMB4 S2 S16 2 16
RAMB4 S4 4 -
RAMB4 S4 S4 4 4
RAMB4 S4 S8 4 8
RAMB4 S4 S16 4 16
RAMB4 S8 8 -
RAMB4 S8 S8 8 8
RAMB4 S8 S16 8 16
RAMB4 S16 16 -
RAMB4 S16 S16 16 16

Table 2: The sizes block RAM is available in the Xilinx Virtex-E series.
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transfer describes the contents of the cell following and the last word is the parity
of the entire cell calculated as XOR of all words initialized with ”00...00”. The cell
header selects what to do with the cell and is split into 3 fields - command (4 bits),
reserved (4 bits) and sequence number (8 bits). The layout of the field is shown in
figure 10 and a sketch of the timing on the bus is show in figure 9.

Bits Mnemonic Sender Description

0000 IDLE A To ease implementation, we reserve a cell
header of pure zeroes to represent an
empty cell.

0001 HEARTBEAT A To signal a LiAB is still alive, it should
use its bus assignment to transmit a
HEARTBEAT message - this is a mes-
sage, that contains no contents, but sig-
nals that the LiAB is still alive and ready
to act as master.

As seen, a cell header with all zeroes constitutes an empty cell. This was im-
portant to know as this is how the internals distinguish an idle bus from a working
bus - if the first word transferred from any unit is a zero, the unit has nothing to
say in this bus epoch. Originally, the CellQueue would start to transfer whenever
its do_get signal was asserted and the queue contained an entire cell, even if it
was out-of-sync with the bus - it would just get in-sync in the next epoch, where it
would restart transmission. Due to a new architecture internally in the CellQueue,
this was behavior was eliminated.

Bits Mnemonic Sender Description

0010 FROM PS P The packet switch directed this message
at the control plane.

0011 TO PS M This cell must be forwarded in the hier-
archy after its quarantine time is success-
fully completed.

These two messages relates to the communication with the outside of the cluster.
If a FROM PS is transmitted on the internal bus, it is passed to all LiAB, so they
may figure out what the proper response to this message is. TO PS is put in
quarantine until a time-out period is elapsed. Only the LiAB emulating the packet-
switch is allowed to send FROM PS, likewise for TO PS - only the currently elected
master may send such a message. These messages should be sorted in the incoming
queue.

Bits Mnemonic Sender Description

0100 DROP S Sent by a non-master to indicate that the
cell with the sequence number of the cur-
rent cell should be discarded from the
bridge. If all non-masters agree on the
cell should be dropped, the bridge may
not forward the cell. When 4 cells have
been dropped, a new master must be
elected.

0101 ACCEPT S Sent by a non-master to indicate that the
cell with the sequence number of the cur-
rent cell is accepted.

These two messages are used by LiABs in order to stop or accept a TO PS
message. If two units agree to drop message, the message is removed from the
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quarantine queue before being passed on to the Packet Switch. If one (other than
the sender) sends an ACCEPT with an appropriate serial number, it is passed on.
These messages may be send from any non-PS LiAB, hence a master may actually
DROP its own cell, thus indicating to the FPGA that just one other LiAB needs
to drop this cell.

Bits Mnemonic Sender Description

1000 GET STATE S A new/rebooted LiAB has joined the
cluster and needs a copy of the masters
current state. The master must inter-
cept this message and schedule a flow
of STATE DUMP messages.

1001 STATE DUMP M This cell contains data representing the
current state of the master in the clus-
ter. Higher-layer protocols are needed
to ensure the state is correctly trans-
ferred.

1010 STATE UPD M Whenever the master changes some-
thing in its state, it should send a cell
with this content type. If a non-master
sends this message, it should be reset as
it is not entitled to make state updates.
The slaves have to decide if this update
makes sense.

The messages in this table relates to maintaining the clusters state.

Bits Mnemonic Sender Description

1111 SOFT HOVER M It is an request to the FPGA to elect a
new master in the cluster and flag this
LiAB as failed.

And finally, we need a method to do an intentional hand-over if the LiAB knows
it will time-out we might as well signal this and force an election of a new master.

The clever reader might have noticed that no sender IDs are ever used. As
the bus is assigned to a LiAB, the units needing a sender can look at the current
bus-assignment and thereby determine the sender. Likewise, there is no explicit
destination as the message is either directed at the PS, in which case everybody
needs a copy, from the PS (everybody needs a copy) or something only relevant for
designated units in the FPGA. In any case, the destination can be derived from
the cell-header, so there was no need to waste 4 bits (yes, I know, we do that
anyways to reserved storage). If it was included in the cell-header, a LiAB might
be able to fake the source address and lead the FPGA to fail - eg. an evil (faulty)
LiAB might decide to send accept cells with fake sources and thus make its cells
pass immediately. This will not happen when the source of a cell is dictated by
a bus owner-signal. The LiAB would also need some method to determine their
source-address, which would further increase complexity without gain.

4.5 The bus-based VHDL design

VHDL [16] and Verilog are the two languages supported by ModelSim, the available
hardware simulator. VHDL is preferred as VHDL has certain desirable features for
good design practices, eg. types. Verilog does not have the same type-mechanism
and thus makes it easier to make errors regarding signal meanings. The Verilog
syntax is more like C, short and effective, unlike VHDLs approach, which contains
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Figure 11: Top entity in the VHDL design - the Reliplan.vhdl file.

a large number of keywords. Both languages are fully supported by the available
synthesis-tools.

As seen on figure 11, a bus was chosen for the final design. In this section,
we will dvelve into the details of the different modules, namely QuarentineQueue,
LiAB_Interface, HeartbeatMonitor and BusSharer to look at how they finally
was implemented and details regarding progress towards the final implementation.

Regarding Mentor’s two products for synthesis I had available; Mentor Leonar-
doSpectrum and Mentor Precision RTL. Precision RTL has problems using the tri-
state drivers used extensively throughout the design to ensure an almost constant
cost with a larger number of cells in the queues. As far as I could deduce, Preci-
sion RTL tried to implement my busses using muxes which becomes very expensive
in latency when using more than 4 cells in a queue. This reduced the possible
speed of the design implemented in Precision RTL to significantly less than the
desired 100MHz (closer to 45MHz with 8 cells in the queues). LeonardoSpectrum
did not have these quirks and was therefore chosen for implementing the design.
Unfortunally, LeonardoSpectrum does not run correctly under Linux/WINE.

I originally desired to do a multi clock-domain design with clock boundaries
through the LiAB_Interface using the possibility of feeding two independent clocks
to each BlockRAM. This idea was discarded as I realized that LeonardoSpectrum
would always assign one of the global clock signals to any signal used as a clock or
latch enable. As I intended to use 5 independent clocks and 4 latch enable (GPALE)
signals, I soon realized that this multi clock-domain design was unfeasible and the
idea was therefore discarded (the original design for my LiAB-to-FPGA interface
can be seen in figure 18).

4.5.1 BusSharer

As shown in figure 11 we use a TDM bus. This bus needs a manager, and the easiest
way to make one of these is to use a one-hot ring. The disadvantage of using a naive
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ring is in case the hot bit disappears, the ring would no longer work. Therefore, a
chain of flip-flops with a clock prescaler in front, as shown in figure 12, was chosen
for the initial design. This design would ensure that two-hot would not happen
unless storage in the DFFs was contaminated. This could additionally be assured
not to happen by adding AND-gates on the outputs keeping output low if it detects
more than its own input high. This design is easier to extend to triple-redundant
operation as described in [17].

The ring design had problems being implemented in LeonardoSpectrum due to
the clock being output from the prescaler (and I somehow never thought of enable-
signals) and the begin-epoch and end-epoch signals needed to synchronize the bus.
I therefore ended up using a far simpler design (in terms of code, not area) shown in
13. The major advantage of this design is that LeonardoSpectrum uses a primitive
to implement the adder-register part of the design.

4.5.2 HeartbeatMonitor

The HeartbeatMonitor consists of three count-to-zero registers shown in figure 14.
If we receive a Heartbeat message from a LiAB, the appropriate register is set to
ones. If the counter reaches 0, the LiAB related to this register is assumed crashed
and if it was master, a new master is elected amongst the LiABs having reported
positively in. This is done as shown in the state diagram in figure 15. The timeout
value is measured in epochs and is given in a number of bits during synthesis as a
generic supplied to the HeartbeatMonitor. This is to simplify the implementation.

The width of the timeout registers is set to 16 bits equalling 65536 epochs,
which is 256× 4 × 65536/100× 106s−1 = 671ms. This value was selected to ensure
a rapid timeout but not to force the LiAB to spend too much time sending Heartbeat
messages to the FPGA.

Important is it to consider the time to transfer a single cell from the LiAB to
the FPGA - this is assumed to be a high-priority task for the LiAB and thus not
interrupted. In that case, the transfer should take 256 cycles of a word-transfer
to the FPGA over the GPB (General Purpose Bus) and an additional 256 reads
from memory for the SC520. A single word transfer over the GPB takes n cycles to
complete as seen on figure 16. We assume that the delay, which is customizable in
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Figure 15: Election of new master

the SC520, is set to 0 for these burst moves. As mentioned previously, we assume
that the GPB in the transfer period is only used by our transfer (could be ensured
by a rep outsw). To sum up the election process shown in figure 15, the heartbeat
monitor priorities LiABs in the order 0,1 and 2 when leaving PANIC. The heartbeat
monitor starts out by assuming all attached LiABs have failed and only selects a
new master whenever the current master fails.

4.5.3 DataFeed and LiAB

I find it important to point out these two files as they are the data-sources used in
testing the design. DataFeed is a simple VHDL entity to read data from a file into
the design. DataFeed supports only a single test vector and two different commands.
The format of the input is simple - the first character in each line describes what
the line does - p for pause a number of clock-ticks, d for data. Data must have same
number of bits as the std_logic_vector used for the port.

Unlike DataFeed, LiAB.vhdl tries to emulate the signals from the LiAB with
proper timings. This was used to test the function of LiAB_Interface. In order to
accurately emulate a LiAB’s signals, the LiAB entity has additional commands com-
pared to DataFeed, but the concept is the same - first character of line determines
the command. LiAB supports ’p’,’i’,’r’ and ’w’ commands.

In case of ’r’ and ’w’ (read and write), two addressing vectors must be supplied,
one containing the 3 CS0-CS2 chip select bits and one for the 10 bit A9-A0 address.
Depending on the command, an additional data vector of 16 bits may be appended.
In figure 16, a reduced version of the diagram shown pp. 70 in [23] is shown. The
diagram shows what I consider important in relation to interfacing with the LiAB
and what the interfaces has been geared towards.

’p’ functions like DataFeed, it waits for a number of clock periods. ’i’ is impor-
tant in simulating a real LiAB - it waits until the interrupt number supplied after
’i’ occurs, eg. ’i 2’ is expanded to ”wait for interrupt 2”.

Of course it should be noted that neither of these entities are synthesiable and
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Figure 16: Reduced timing diagram from AMD-SC520 Data sheet [23] pp. 70.
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Figure 17: Conceptual overview of the LiAB Interface.

are only used for testing purposes.

In order to easily produce test vectors for the LiAB_Interface, a small C
program was developed capable of outputting data in the format supported by
LiAB.vhdl. This was especially important as an entire cell needs to be transferred
to the FPGA. That would mean 512 writes plus the additional control, quite a
daunting task. This program can be found in appendix.

4.5.4 LiAB Interface

The original design for LiAB Interface (figure 18) included DFF clocked by /gpiord

and /gpiowr. This idea stems from the observation that data is stable around the
rising edge of /gpiord and /gpiowr, and the signals could thus be used to trigger
the DFFs. Unfortunally this designs could not be synthezised as LeonardoSpectrum
insisted on assigning global clock buffers to /gpiord, /gpiowr and gpale and would
not allow me to LOCate the signals to the pins that the PCB was using. Therefore
this design was abandoned and the design shown in figure 17 and figure 19 was used.
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Figure 20: Internal clk in relation to bus signals.

These designs assume that clk exceeds 33 MHz as at least one clock edge must fall
in the low period of /gpiowr or /gpiord. It can be seen from figure 19 and figure
20 is that the entry stage detects the rising edge of /gpiowr and passes the event
on in the LiAB_Interface. This should pose no problems as the FPGA is clocked
at 100 MHz. Meta stability is more of an issue in this design, but should again pose
no problems as Tclk − 2 × TLUT are available for stabilizing signals before entering
the inner part of the LiAB_Interface.

By always being ahead of the output, we fulfill the 10ns requirement - we prepare
what will be read next time in a register ready to drive the bus, hence the delay is
only from /gpiord to tri-state drivers begin driving the gpd pins.

In the LiAB_Interface, a small FSM is present. The purpose of this FSM is
to handle various communication details such as ”this is the first word of a cell”,
”please drop all cells in my incoming queue”. The commands available to this FSM
is described in greater detail in section 5.

4.5.5 CellQueue

The LiAB_Interface uses CellQueues to store the cells as they arrive word-wise
from the LiAB. The CellQueues is a FIFO suited for queueing cells destined for
the internal bus or the LiAB. It was originally capable of running with two distinct
clocks, as they used the RAM4B_S16_S16 entities build-in clock boundary, but was
later redesigned to use only one global clock. The CellQueue entity is capable of
burst input, burst output, single-word input and single-word output. The do_get

and di_put inputs on the entity determines the function - if di_put is high on rising
clock, the word on di will be stored on the next free space in the currently filling
cell. There are no wait states associated with input - when a cell has been filled and
checked, the queue automaticly moves to the next cell and begins filling. Therefore
it is possible to continuously input data to a CellQueue. Output is a little trickier
as the pipeline must be filled before starting output (this was a result of the large
routing delays in the FPGA). The CellQueue is capable of outputting an entire cell
in a burst (one word on each clock cycle), but needs 4 ticks to prepare for the output.
This is required to get all registers in the output stage of the queue prepared and
to read data ahead in the BRAM. The input side of the BRAM when reading [n] at
the output of CellQueue is actually n+2 and the output of BRAM is [n+1]. Thus
when it stalls (by leaving do_get low), the CellQueue needs to capture the output
of the BRAM in a temporary register inside the entity as output from BRAM will
be [n + 2] in the next clock cycle. Thus when leaving do_get low, we store in a
temporary register and mark that this register is the next output value by adding
a FSM inside CellQueue. The state machine has the states depicted in figure 22.
The large amount of states is a hang-over from debugging the design - I had severe
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Figure 22: State diagram for the sending side of CellQueue.

problems making the right output at the right time, so a lot of wait-states where
added. These remain as the current FSM works and we have, in Reliplan, more
than 900 cycles to get ready to transmit due to the TDM nature of the bus.

4.5.6 QuarQueue

To the internal bus, the QuarQueue is attached. This queue is the heart of the
system as it does all the work. The quarantine queue consists of three distinct
functions (as seen on figure 24) - receive cells (RCV), process cells (PRC) and send
cells (SND) and a storage for the state of the cell. QuarQueue is a reordering queue
- it is not guaranteed to output cells in the same order as they arrived.

For each block of memory used to store a cell state, a register is assigned.
Each cell must progress through the states depicted in figure 25. Along with the
transition between states shown in the figure, an acronym relating to the processing
unit responsible for the transition is shown. It is important to note that from any
given state, only one processing unit is allowed to move the cell away. This ensures
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Figure 25: States a cell must progress through and the system components that
may move the cells in states.

us that no conflicts will arise.

The cell state registers are implemented as triple-port memory as all three de-
vices needs read-/write access to the cell states. The design of the cell status
registers are shown on figure 26). As seen on figure 26, the cell states uses busses
for output. Originally, I access the memory with an enable-signal for the cells. This
has the unfortunate effect that it is possible for two registers to attempt to drive the
bus at the same time. By accessing with a read-position and decoding this value
instead, this should be ensured never happen.

Using a bus for output had an unfortunate side effect - it is not immediately
possible to tri-state an enumeration and I therefore had to resolve the enum into a
std_logic_vector as shown in QuarQueue.vhdl(80).

Using a bus for the input to the state register would yield an unfortunate side-
effect; if two units where to attempt a write in the same cstat-cell, the result would
be undefined as the bus has two drivers. This could be fixed by ensuring in a piece
of logic that no wf would ever be asserted if a write conflict exists. This solution
has yet to be implemented as normal function of the QuarQueue should ensure that
this would never happen.

The first unit to process a cell is the RCV unit. It has the contents shown in
figure 27 and 28. Two separate functions must be performed in the RCV - scanning
for a free cell to fill with cell data and receiving the actual data. The reason for not
making a simple state machine here is the need to be able to receive a continuous
feed of data from the bus and we must thus be ready with the number of a free
cell shortly (worst case is to scan entire buffer for new free cell) after having had
the last free cell allocated for a receive buffer. The scanning is performed as a loop
around the buffer and takes thus at most n cycles, where n is the number of cells
in the quarantine queue, to complete. If no free cell was found, RCV will continue
to fill the same block as it already have used - hence it drops the most recently
received cell. This feature makes the quarantine queue subject to congestion, which
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could be avoided by having counters that count how many cells have been put in
quarantine from each LiAB. By counting these, it could be assured that no LiAB
could ever congest the queue.

When updating the cell state register when starting receive, RCV notes who is
the current bus owner in the .accept field. This is used by PRC to update other
cell states if the cell received was either an accept or a drop message.

Once RCV is done receiving the cell and the cell has passed initial sorting (not
empty), the cell has reached S FULL. It is then picked up by PRC, which either
empties the cell or moves it to S QUAR (quarantined state) depending on the
cells content. If the cell contains a drop or an accept message, the entire queue is
searched for cells whose sequence number matches the number in the cell. In case
the cells sequence number matches, the appropriate field is updated with the new
drop/accept mask. Due to the pipelining of the cstat-registers along with the PRC
pipeline, the state machine has been padded with appropriate wait states to allow
everything to be updated.

If the cell state is S QUAR, the PRC will also pick up the cell to check if it has
exceeded its timeout value (equal - important later) or if two LiABs has accepted
the cell (it is assumed that the one sending the cell always agrees with its content
so one has already accepted the cell) it is moved to the S PASS state to be picked
up by SND. If the cell was dropped by two LiABs, the cell is discarded. In this
case, the HeartbeatMonitor should be notified but will not be in the current design.
The PRC part has been implemented as a state-machine controlling the pipeline
for updating. As the diagram containing all connections would be too crowded, the
reader is encouraged to read the VHDL source with figure 29 at hand.

The purpose of SND is to send cells that have reached S PASS. Because no
continuous operation is needed of SND (it is not required to be able to continue
output if different blocks), it can be implemented as a simple state machine. It
moves through the states shown in 31, but unlike CellQueue, the QuarQueue will
only be attached to another cell queue, that supports continuous input, so it needs
not such a complex handling of possible waits (ie. get going low during transfer)
- it will always run the entire transmission in one fast transfer. The diagram for
SND is shown in figure 32. It is important to note that a QuarQueue’s output
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Figure 34: The small state machine used to pass cells from QQ to LI.

can only be attached to something that supports the burst transfer - eg. it is not
possible to use it directly towards the LiAB as the LiAB only slowly (compared to
internal clock) consumes words. For this reason, the QuarQueue is attached to a
LiAB_Interface-entity.

What is worth noting is that when working with QuarQueue, we have a request
signal that is used to ask the QuarQueue to start searching for a cell to transmit.
When the cell is ready do_sync is asserted, hence do_syncworks as an acknowledge-
signal telling the outside that the QuarQueue is ready to transmit. do_get must be
kept high during the entire cell transmission as QuarQueue, unlike CellQueue does
not have the correct handling of a stalled transmission. If someone should happen
to deassert do_get during transmission, the word following the current, will be lost.
This was, as mentioned in 4.5.5, worked around by using an extra register to capture
BRAM output during stalling.

4.5.7 Reliplan

We now have the parts needed to build the entire clustering hardware. The parts
are put together as depicted in figure 33.

Between the QuarQueue and LiAB-3’s input, a small FSM was added in order
to handle the proper signalling to the queues. This FSM has the state diagram
shown in figure 34 and thus consists mostly of a counter.

4.6 Tool flow

As I spend a significant amount of time figuring out the flows used when using
LeonardoSpectrum with Xilinx ISE, I will recapitulate the major points of the
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Figure 35: The project tree in Xilinx ISE.

flows here to save future developers time.

LeonardoSpectrum takes the VHDL/Verilog files as input. The listing of files
in LS must be sorted accordingly to the use in the design. The output must be
written to an EDIF (.edf) file used as input to Xilinx ISE.

The pin mappings are available as both a CSV and an UCF file. The UCF file
must be used together with the EDIF file generated by LeonardoSpectrum in Xilinx
ISE’s Place-and-Route tool (PaR). The new project in Xilinx ISE should consist
only of a device (XCV812E-BG560) with an EDIF file, which has an UCF assigned.
The project navigator tree is shown in figure 35.

Regarding coding style: Remember to initialize all registers on reset, otherwise
LS will complain but not fail. An additional condition may never be applied to
if rising_edge(clk) then.

4.7 Synthesis

Having designed the needed parts and figured the tool flows out, it is time for
some synthesis. For this purpose, we use, for the aforementioned reasons (see 4.5),
LeonardoSpectrum coupled with the Xilinx ISE.

4.7.1 Queue sizes

The size of both CellQueue and QuarQueue are determined by a generic which in-
dicates how many cells the queue must contain. Only powers of 2 are supported,
since the wrap-around in adders are implicitly used to limit indexing. For the size
of the indexing towards BlockRAMs, a special function in types.vhdl is declared
- bits_needed() - which intentionally returns positive’high whenever the num-
ber given to it does not match a power of two in the range 2-4096. This should
make any synthesis-tool barf over the design (not assured if the FPGA happens to
contain significantly more than 4GiBits and the implementation dictates a positive
is 32 bits). Otherwise, it returns the bits needed to represent a number with these
different values (ie. ceil(log2(vals))).

I expect both CellQueue and QuarQueue to scale well with the number of cells
in the queues. The size of the largest adders in the queues remains 8 bits as offsets
into the BRAMs are in the range 0 to 255 and queues would remain below 64 in
size. The XCV812E contains 280 blocks of BRAM, so we have plenty of space for
queues.
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The minimum size of a queue is of course 2 as at least one is needed for filling
and one for emptying. Unlike proper VHDL, this is not declared as a ”positive
range 2 to 280” as it should have been but instead as a ”positive”.

The default sizes of the queues are respectively 4 and 32 for CellQueue and
QuarQueue - the former probably to little and the later too large, 16 would be a
more sensible size. As these values are declared as generics, they can easily be
overridden in each instantiation of the entity (in LiAB_Interface, they are used in
sizes 8 and 16 and in Reliplan, QuarQueue is used in size 16).

In LiAB_Interface, the input from the LiAB arrives so slowly, that the queue
in most cases will be emptied before the next cell is received from the LiAB, even
if the LiAB writes at full possible speed. The outbound queue in LiAB_Interface

is more critical. The LiAB is slow (compared to the FPGA) to read data from
the queue and the queue therefore needs more room to handle bursts of cells -
therefore a queue size of 16-32 on the outbound queue would be more appropriate.
Experimentation with synthesizing the design has proved that 16 is easiest to make
timing converge.

4.7.2 Timing

As mentioned in section 3, the board was equipped with a 100 MHz crystal, and I
therefore insisted that the design should run at 100 MHz. This proved to be a major
obstacle as the time needed to route signals around the FPGA was much larger
than expected. That meant that the original design where many of the registers
shown in the previous sections did not exist turned out to be far too slow. The
naive approach to the design reached a fclk of only 50 MHz, by adding entry flip-
flops on the LiAB_Interface’s, the frequency was boosted significantly towards
the goal and reached some 80 MHz. From the timing reports returned from the
synthesis tool (such as those depicted in appendix D) and place-and-route, critical
path information was extracted and the critical path shortened by reformulating
certain statements, eg.

do_move_cell <= ’1’ when do_islastw=’1’ and e=’0’ or

flush_queue=’1’ else

’0’;

Somehow is synthesized to be slower than

do_move_cell <= do_islastw and ((not e) or flush_queue);

It is important to note that the timing report returned from LeonardoSpectrum
does not include correct wire-delay information, so only the .twr timing report from
Xilinx should be used.

Fan out also proved to be worth playing around with as the design was slower
with an unlimited fanout. This was what lead me to try fiddling around with moving
some components in order to reduce fan out. Small increases in speed came from
this, but I still needed some 15 MHz to reach the timing goal. This forced me to add
additional registers on the output from the queues, though this was an undesired
choice as this forced me to handle the quite intricate pipelining issues in the queues
- such as the run-away tendency in CellQueue, which was an issue when working
towards the LiAB, where the normal function requires do_get on the CellQueue to
go low while we wait for the next read from the LiAB. This is also the reason for
not implementing the small work-around in QuarQueue.
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Figure 36: The two simple testbenches.

4.7.3 Testing the synthezised design

For testing the design, two small setups was made - LiAB_testinout.vhdl and
LiAB_quartest.vhdl, which connects a single LiAB (LiAB-0 pins) to the FPGA.

The first test connects a LiAB_Interface to itself and is thus a simple loop-back
device with the built-in sorting embedded in the LiAB_Interface. The internal bus
is exported on HP CONNECTOR 2 and can be monitored. The output is delayed
a single cycle as it would otherwise be the critical path of the design and would
limit the clock speed reported from Xilinx PaR tool. From the original high-level
model, we see that we expect an interrupt 2 shortly after completing the transfer of
a cell to the LiAB Interface. We then read what we recently wrote and can thereby
test if any distortion occurred during transfer. The CellQueues embedded in the
LiAB_Interface performs some sorting of cells arriving on the internal bus and
we hence expect certain cells to be dropped. If we were to send a HEARTBEAT
message, the message should not appear on the output of the FPGA, likewise with
ACCEPT and DROP as these messages are sorted away by the LiAB_Interface.

The LiAB_quartest connects a LiAB_Interface to a QuarQueue and again to
the LiAB_Interface. In this simple design we also have a loop-back functionality
like LiAB_testinout, but we also have the delay-effect and cell sorting properties
embedded in the QuarQueue. Basically, the only cells to pass through this design
should be the TO PS messages. This test was implemented using a QuarQueue with
16 cells and reached 100.020 MHz after PaR. Reducing the number of cells in the
quarantine queue increases the possible speed a bit to 100.1 MHz and 100.2 MHz.
We use the same test vectors as above, but our results differentiate as we see some
cells get dropped in the QuarQueue.

The time required for the PaR increases rapidly from 35 min for 16 cells to > 3h
for 32 cells in QuarQueue, which, incidentally, does not meet the timing constraints.

4 simple tests was designed in order to see if the testbenches work. The test-
vectors was either written by cell_gen.c shown in appendix C.

Test-1: Poll LiAB Interface

1. read ctrl

2. write 0x00 to ctrl

3. read ctrl
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4. write 0x01 to ctrl

5. read ctrl

Test vector is then:

r 101 0100010000

w 101 0100010000 0000000000000000

r 101 0100010000

w 101 0100010000 0000000000000001

r 101 0100010000

Expect to read 0x097 in first and second read, 0x03431 in third read. The
purpose of this test is to see if polling works correctly and the LiAB_Interface is
able to properly run the bus in accordance with what the LiAB expects.

Test-2: Simple cells without sort

1. write CMD SEND to CTRL to start cell

2. write a TO PS cell (256 words)

3. wait for an interrupt 2

4. write CMD RECV to CTRL to ready cell for reading

5. read 256 words

Test vector is then:

w 101 0100010000 0000000100000000

w 101 0100010010 0011000001011010

w 101 0100010010 1000111110001000

--- 253 lines with junk data and finally parity ---

w 101 0100010000

i 2

w 101 0100010000 0000000100000001

r 101 0100010010

--- last line repeated 255 times ---

Purpose is to see if the testbench is capable of receiving a valid cell, enqueue it,
transmit it through the internal bus, enqueue it again in the outbound queue and
dequeue it slowly in LiAB speed. Cell is a TO PS to ensure it goes through both
a CellQueue and a QuarQueue. This especially tests the CellQueueCellQueue+s
ability to allow low periods of do_get and di_put - something worth testing as it
caused a number of headaches during development.

Test-3: a FROM PS cell should be removed in QuarQueue but not in

CellQueue

1. write 0x10 to CTRL to start cell

2. write a FROM PS cell (256 words)

3. wait for an interrupt 2

4. write CMD RECV to CTRL to ready cell for reading

5. read 256 words
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Test vector is then:

w 101 0100010000 0000000100000000

w 101 0100010010 0010000001011010

--- 254 words junk data and finally parity ---

r 101 0100010000

i 2

w 101 0100010000 0000000100000001

r 101 0100010010

--- last line repeated 255 times ---

In the first setup, the cell should be passed immediately to the outbound queue,
but in the case of LiAB\_quartest, the cell should disappear as the QuarQueue is
supposed to throw it away.

Test-4: A cell to drop in both cases

1. write 0x10 to CTRL to start cell

2. write a HEARTBEAT cell (256 words)

3. wait for an interrupt 2

4. write CMD RECV to CTRL to ready cell for reading

5. read 256 words

In both testbenches, the cell must be dropped as it is not destined for anything
but the non-existant heartbeat monitor.

w 101 0100010000 0000000100000000

w 101 0100010010 0001000000000000

w 101 0100010010 0000000000000000

--- last line repeated 253 times ---

w 101 0100010010 0001000000000000

r 101 0100010000

i 2

w 101 0100010000 0000000100000001

r 101 0100010010

--- last line repeated 255 times ---

Test no. LiAB testinout LiAB quartest

1 OK - cell passed OK - cell passed
2 OK - cell passed OK - cell passed after 327us
3 OK - cell passed OK - dropped cell as expected
4 OK - no interrupt OK - no interrupt

Table 3: Simulation results of the synthesized testbenches.

Note, that it is practically impossible to view the internal signals of the test-
benches since they are named by LeonardoSpectrum and Xilinx and most often has
a name like nx_734. Therefore, only the outside of the firmware was monitored,
which, as noted above, has a flip-flop directly on the internal bus, so it is 100ps
delayed always.
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4.8 Future Extensions

4.8.1 More cell-sorting in CellQueue

In the current design only empty frames are removed from the queue unless the
generic is set to true, in which case heartbeat, accept and drop messages are re-
moved. This feature was used to reduce the traffic to the LiABs, ie. in the outbound
queue of each LiAB_Interface. A finer grained sorting mechanism could be desired
- especially enforcing that only the master is allowed to send some of the messages
- this is needed in the inbound queue of LiAB_Interface. The most generic way
of doing this would be to input a mask to the CellQueue, that describes what
messages are allowed to be enqueued. This could easily be implemented.

The advantage of monitoring if this entity is master before passing on cells
through the queues would be to monitor if a LiAB wrongly assumes it is master
and should respond to messages. In case it is not master, a suitable response to
not-allowed messages would be to reset the LiAB. Unfortunally, there is not access
to the reset pin through the LiAB connectors.

4.8.2 SeqNo assigment

If the current master LiAB malfunctions, it could send messages with duplicate
sequence numbers. The problem here is re-identification of the correct frame to
drop. The slaves would of course send DROP on the cells SeqNo, but this could also
affect a correct frame, which could be dropped unintentionally. This would normally
not be a problem as a LiAB would increase its sequence number immediately after
transmitting a cell. A method for assigning sequence numbers in the FPGA could
be an advantage, but here the problem was modifying the contents of the RAMB in
the CellQueue before the cell is transmitted on the internal bus - this could happen
in the sending part of the CellQueue, where the correct sequence number could be
forced onto the cell header when appropriate.

Another obstacle would be updating the checksum to reflect the correct sequence
number. One solution to this could be to redefine interfaces so the cell header is
not included in the checksum, but this defies the purpose of the checksum.

4.8.3 Replace pass-condition in QuarQueue

Currently, a cell moves from S QUAR to S PASS only when the current epoch
counter is equal to the pass_timeout field of the state register. This decision was
made as the QuarQueue has 1024 cycles to complete processing of all cells in the
QuarQueue. This does not pose a problem if the QuarQueue is set to a small (¡32, in
which case the 100 MHz cannot be reached anyways) number of cells. To convince
ourselves of this we must consider the time needed to process a single cell. We must
finish the processing of a cell before a new cell has been received from the bus, ie.
we have 256 cycles to complete the cell processing. The longest processing time is
the accept/drop cells as they need to search through the entire QuarQueue for the
appropriate cell - for each entry in the queue we spend 1 cycle thanks to the pipeline
design, we need to wait for some pipeline empties - that amounts to 5 cycles, thus
37 total. This means that we can safely complete the processing of a cell before the
new cell arrives and thus QuarQueue never drops behind processing the cells.

In any case, the worst thing that could happen would be the cell would be
delayed another timeout period.

4.8.4 QuarQueue overflow signalling and flushing

Flushing is considered dangerous and not implemented as one or two malfunctioning
LiABs could severely destroy operation of the cluster. If the flush-signal is just a
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single bit, the malfunctioning LiABs could easily end up in a state where they signal
the FPGA to keep flushing the queue and the system would therefore fail signifi-
cantly. Therefore, more complex messages must be sent to the QuarQueue in order
to make it flush. This is one of the basic considerations - nothing should happen by
chance but be an intentional operation from the LiABs side. Overflow signals could
be a nice thing to add to the QuarQueue but would not really contribute much to
the operation of the system. By exposing the rcv_sfc_found signal in QuarQueue

on cell boundaries, an overflow flag could easily be implemented.

4.8.5 QuarQueue and HeartbeatMonitor information exchange

The cluster could be sped significantly up by using the failed flags from the Heart-
beat monitor to set the timeout in QuarQueue. This way, the performance degra-
dation when a LiAB drops out could be avoided by using a shorter timeout when
only one or two LiABs are available.

This would unfortunally lengthen the logic delay in RCV of QuarQueue and has
therefore not been implemented as the timeout epoch would go through additional
logic in order to determine the correct value to use.

Sharing information in the other direction is also advantegous. The current
design has a problem regarding dropping cells - it would be a significant advantage
if a new master was elected whenever a cell was dropped from QQ. This relates
to information loss. The CellQueue was fitted with a sorting mechanism, that
would relieve the slaves from seeing the others communication regarding heartbeats,
dropping or accepting cells - drop messages should not be removed from the CQ as
they are important in relation to determining if a newly elected master must repeat
the last message transmitted. This is a minor fix to CQ (one change in a ”when”
statement in line 196). This change would put a heavier load on the attached LiABs
but would allow a LiAB to determine if a cell was dropped as it must see one besides
itself. In the context of verb+Reliplan+, a LiAB does not hear itself as di_put is
connected to inverted bus-owner.

4.8.6 HeartbeatMonitor should support SOFT HOVER

Currently, the HeartbeatMonitor does not support the SOFT_HOVER message - a
combination of laziness and time pressure. The fix is not very difficult. The problem
is not that difficult - if a hand-over is needed, just refrain from sending heartbeats,
and the HeartbeatMonitor will timeout (in app. 600ms) doing a hard hand-over.

4.8.7 A checksum more resilient than parity

It turns out that 256 words of the same value actually constitutes a valid cell.
This effect was observed in the LiAB_quartest, where I could not immediately
understand why it seemed to have two cells in the QuarQueue, until I realized that
256 words of the same value will pass this parity check. Therefore, a more resilient
checksum is needed. Suggested solution (in 10 secs) is to XOR a rotated value
instead of the original. This resembles a cyclic redundancy check and would catch
the simple error mentioned above. The solution, I took for the above problem
was to ensure that the communications bus between the LiAB_Interface and the
QuarQueue would remain ”00..00” while waiting for the transfer slot (remember
that in LiAB_quartest, the bus between QQ and LI was scheduled in blocks of 256
cycles where half of the time, the bus remained idle - the problem was that QQ was
allowed to drive the bus all the time, even while waiting for its slot).

Improving the checksum makes it more likely to actually detect errors, hence the
need for retransmissions. Currently, the firmware does not support retransmissions,



40 4 FIRMWARE

but could easily be fitted to support it by introducing a new input to a CellQueue

indicating if the transmission was completed correctly and that it may move on.

4.9 Summary

In the FPGA, a quarantine queue was implemented and appropriate interfaces to-
wards the LiABs was built. The FPGA was fitted with a heartbeat monitor, that
was capable of monitoring the timely heartbeat messages from each LiAB and ca-
pable of pointing out a master for the cluster. The FPGA contained a quaran-
tine queue, that would allow LiAB-0 through LiAB-2 to enter into either triple-
redundancy or a slow-functioning mode. The timing goal of 100 MHz was reached
after extensive pipelining. Two simple test were devised and simulated but not
tested on the board.
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5 Software

The LiAB need a driver to interface with the firmware embedded in the Xilinx
FPGA. Through section 4, we saw the development of the firmware with emphasis
on the hardware details. In this section, we will focus on the FPGAs interface
towards the LiAB and what requirements the LiABs on-board driver software needs
to fulfill. The firmware against any given LiAB (the LiAB_Interface - see 4.5.4)
will, from here on, be called Reliplan.

All reads and writes to Reliplan are 16-bit wide and should be performed at the
GPBs lower settings of 1 cycle address, 1 cycle data and 1 cycle wait. This will
assure Reliplan has enough time to process data.

� 0x[0-9a-fA-F]+

base-16 (hex) number

� 0b[0-1]+

base-2 (binary) number

� [0-9]+

base-10 (decimal) number

Reliplan has two registers, CTRL and DATA. The location of these registers are
given in table 4.

Register CS(0..2) A(9..0)

CTRL 0b101 0x110

DATA 0b101 0x112

Table 4: Register locations.

Each register can be either read or written. If a write is performed to CTRL, it is
considered a command to the firmware. If a write is done to DATA, it is considered
a word of the current cell being built for transmission. If reads are performed from
DATA, Reliplan will return data from the cell currently being transmitted to the
LiAB. The first operation in a sequence of 256 on DATA should always be preceded
with a write to CTRL of either a CMD_SEND or CMD_RECV to ensure the internal cell
offset counter is reset to offset 0 before starting a read/write. If the internal cell
offset counter should divert from 0, eg. this is the first write after a crash, Reliplan
will just continue beyond the end of the current cell and into the next cell (if any -
otherwise returns junk data).

The last paragraph implies that a transfer of a cell may not be interrupted
by other read/writes to Reliplan. It is possible to mix reads and writes, but the
semantics are so difficult that it is highly disrecommended.

5.1 Commands

In table 5 the commands available for Reliplan are listed. These commands may
be written to the CTRL register, and immediately after (as in next read), a return
code is ready to be read from CTRL. In table 6 the possible return values can be
read.

By regularly writing a CMD_RECV, it is possible to poll the interface for new
cells, but polling is, in general, considered bad as it consumes CPU time without
actually performing any work. Therefore Reliplan supports interrupts, as described
in section 5.1.1.
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Value Mnemonic Description

0x0000 CMD_ID0 Put 0x0097 in CTRL
0x0001 CMD_ID1 Put 0x3431 in CTRL
0x0002 CMD_VER Major and minor version is put in CTRL
0x0003 CMD_STAT UNIMPLEMENTED status in CTRL
0x0100 CMD_SEND Next word written to DATA is first word of

cell
0x0101 CMD_RECV Next word read from DATA is first word of

cell
0xFFFF CMD_RESET Reset Reliplan5

Table 5: Commands for Reliplan.

Value Mnemonic Description

0x0000 E_SUCCESS The command succeeded
0x0001 E_FULL Not possible to start a new cell - queue from

LiAB to reliplan already full
0x0002 E_EMPTY Cannot start a new cell read, queue from Re-

liplan is empty
0x0003 E_DISCARD Cell was discarded
0x0004 E_CELLOK cell was enqueued
0xFFFF E_UNIMPL Command sent was not understood or not im-

plemented

Table 6: Return values in CTRL for Reliplan.

5.1.1 Interrupts

Reliplan has been connected to the GPIRQ1 and GPIRQ2 pins, whose meaning are
respectively ”master” and ”data available”.

If GPIRQ1 is asserted (1), this LiAB is the elected master, if the pin is 0, this
LiAB may not attempt to answer messages from the packet switch.

GPIRQ2 tells the LiAB it needs to read a cell from Reliplan and will not be reset
to 0 until the queue has been emptied - there is no facility to clear the interrupt
after the ISR has been started.

5.2 Checksum

In order to protect against transmission errors from the LiAB to Reliplan, the last
word of the cell transmitted must be the even parity of the data words in the
cell. This not-too-resilient check should be changed in future versions of Reliplan,
which will return a value different from 0x0001 when doing CMD_VER. Pseudocode
for checksum calculation is shown in figure 37

csum = 0x0000

FOR i IN 0 TO 254 DO

csum = csum XOR cell[i]

cell[255] = csum

Figure 37: Pseudocode for checksum calculation



5 SOFTWARE 43

5.3 Communication sequences

5.3.1 Init

Reliplan contains a state machine controlled by the LiAB through the CTRL register
located at the address listed in the table below. When the FPGA is reset, a 0x0097
can be read from CTRL. The reason for this init behavior is the need for each
LiABs need to poll the devices attached to the system. This behavior makes it
easier to find an attached Reliplan device. This behavior is the same as if CMD_ID0
was written to CTRL. To further assure the presence of a Reliplan device, the LiAB
may write CMD_ID1 to the CTRL register. Soon afterwards, the value 0x3431 can
be read from CTRL. If both these test succeed, there is plenty of likelihood that
a Reliplan is actually present at the address. By writing CMD_VER to the CTRL
register, the CTRL register will be set to the current version of the Reliplan in the
high byte of the register and a revision level in the low byte. Currently, major=00,
minor=01.

The LiAB sometimes needs to reset Reliplan, this can be done by writing
CMD_RESET to Reliplan. The effect of this is to drop all unsent cells in the queue
and reset the interface (usually, the fast transfer of cells will assure the queue is
empty).

5.3.2 Send a cell

Start by writing a CMD_SEND to CTRL. This will assure that the next word written
to DATA will be the first word of a cell. Follow this with the cell header, the 254
words payload and the parity.

5.3.3 Read a cell

Start by writing a CMD_RECV to CTRL. Wait a couple of cycles (intentionally im-
precise as the Reliplan should be finished before the SC520 can perform the next
GPB transaction). Read status from CTRL, if 0x0000, read 256 times from DATA
to read entire cell.

5.4 The SC520 on the LiAB

The LiABs used in this project features an AMD Elan SC520 microcontroller -
a very versatile x86 compatible microcontroller with many integrated peripherals.
Especially the GP bus of this microcontroller is interesting as it is this bus the
firmware described in section 4 needs to interact with. The timing of the GPB
is fully programmable as described on pg. 69 and ahead in the SC520 data sheet
[23] and ch. 13 in the SC520 users manual [24]. To control the bus, the PAR
(Programmable Address Registers) must be set up to allow the on-board software
to control the bus.

5.5 Transactions

As described in section 4, the firmware supports a set of messages indicated by the
upper 4 bits of the first word transferred. These bits describe the destination of the
message - if they are a state update, a state dump, state request, destined for the
packet switch or if they are from the packet switch. To recapitulate the message
types, they are listed in table 7.

The suggested way of programming the cluster is a transaction based approach
much like interacting with a transactional database. In these databases, you start
a transaction with a BEGIN, then you issue your SQL statements completing them
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Bits Mnemonic

0000 EMPTY

0001 HEARTBEAT

0010 FROM_PS

0011 TO_PS

0100 DROP

0101 ACCEPT

1000 GET_STATE

1001 STATE_DUMP

1010 STATE_UPDATE

1111 SOFT_HOVER

Table 7: Cell header values for the contents field of the cell header.

with either a COMMIT or a ROLLBACK. If you roll back, any changes the statements
between BEGIN and ROLLBACK will have no effect. If COMMIT ends the sequence, the
changes are performed in the database6. Likewise in this system - the master starts
a transaction by using an unused sequence number in a state update cell and a
timeout or an accept works as commit whereas 2 drops works as roll-back.

In each cell header is a sequence number. This sequence number is the ID of
the transaction about to take place on the cluster. When the master receives data
from the packet switch, it will often need to update its state and send a reply to
the packet switch. The master must always precede the messages to the packet
switch by a number of state updates, thereby allowing the slave LiABs to build a
complete state update and decide, based on listening to the bus and determining if
the cells containing the reply to the packet switch was dropped. If the slave LiABs
do not hear 2 drop messages they may assume that the master has performed the
state update they have collected, and they should therefore commit the state update
themselves. If the slaves hear 2 drops (1 besides its own, which it will not hear) they
can safely assume the cells sent by the master was dropped from the quarantine
queue and the LiAB should hence not commit the update.

5.5.1 Sequences of cells - ”more”-flag

In order to determine if the master LiAB fails in the middle of its transaction, one
bit of the ”reserved” field of the cell header is declared the ”more” bit. If this
bit is set, the master intends to send additional cells containing data. By using a
timer associated with the last cell received, the slaves can determine if they must
abort a transaction as the masters last cell had a set more-flag, but no more data
arrived in time. This also forces the master to prepare its entire transaction in
memory - both the state update and the reply to the packet switch before starting
a transaction. The timeout of the heartbeat monitor is 671ms, the quarantine queue
times out a transaction after (a currently too small value) 64 epochs 6̃40us - so the
entire transaction and the time-out values in the LiABs waiting for more cells if the
more-flag is set must be below 640us.

If no reply is required to the packet switch, a dummy cell must be issued in order
to signify the end of the transaction to the other LiABs. Therefore, the higher level
protocol must facilitate the reception of an empty cell.

We may use the reserved field as this field is preserved in the current firmware.

6And also, no concurrent access to the database will see any changes before commit - the
changes are atomic.
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5.5.2 Version numbers

Messages internally in the cluster and messages directed to the packet switch must
be equipped with a version number. This is required so that newer releases of
the software installed on one of the other members of the cluster can interpret the
message sent by older versions of the software currently acting as master. A field
must therefore be reserved in the second-layer protocol for this information.
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6 Concluding remarks

During the development of the firmware, a number of issues emerged. The most
important part of these was the unexpected reason for the longest path in the digital
design. I initially expected only logic delay to be a problem, but the logic routes
were, in my opinion, so short they should not pose a major obstacle. They did not,
unlike the routing of the signal around the FPGA. The signal propagation between
the different functions was so high that extensive pipelining was required in order
to shorten the paths. This is the reason for the output registers in both QuarQueue

and CellQueue, even though these registers are connected only through a tri-state
driver to the internal bus.

Another major issue encountered was the wrong synthesis tool - Precision RTL
that failed to properly synthesize the busses. This was worked around by simply
choosing to use LeonardoSpectrum instead.

The board completed initial testing (a simple counter outputting an increasing
number on the HP-connectors) and the firmware was synthesized and the timing
model from Xilinx ISE was tested against two simple sequences of cells.

The driver for the LiABs was never completed as time spendt on making the
firmware work exceeded the expected by a large factor, Likewise implementation of
the TCP stack being an extension on the driver, was never initiated.
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A Pin mappings

All pin-mappings are included on the attached CD-ROM in /rip_pins/ as both
a CSV file and an UCF file suited for copy’n’paste to your projects UCF file. To
have a hardcopy just-in-case, the pin mappings are printed here. Along with the
files, the simple Perl-script shown in figure 4 is included for fast translation to other
formats (a slightly modified script made the tables showed below).

Clock and resets.

Net Loc. Dir.

clk AL17 Input

reset C30 Input

Leds; 3 banks of 4 leds.

Net Loc. Dir.

led0(0) AD4 Output

led0(1) AE3 Output

led0(2) AC5 Output

led0(3) AE1 Output

led1(0) AD3 Output

led1(1) AC4 Output

led1(2) AB5 Output

led1(3) AC3 Output

led2(0) AE33 Output

led2(1) AC29 Output

led2(2) AE32 Output

led2(3) AD30 Output

led3(0) AE31 Output

led3(1) AF32 Output

led3(2) AD29 Output

led3(3) AE30 Output

Dipswitches; two groups of 6 and 3 switches.

Net Loc. Dir.

dipsw1 L32 Input

dipsw2 M31 Input

dipsw3 L33 Input

dipsw4 M29 Input

dipsw5 L31 Input

dipsw6 M30 Input

dipswa AM31 Input

dipswb AK28 Input

dipswc AL30 Input

The four HP connectors and their FPGA supplied clocks.
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Net Loc. Dir.

hp0_clk1 U31 Output

hp0_data(15) U32 Output

hp0_data(14) T32 Output

hp0_data(13) T30 Output

hp0_data(12) T29 Output

hp0_data(11) T31 Output

hp0_data(10) R33 Output

hp0_data(9) R31 Output

hp0_data(8) R30 Output

hp0_data(7) R29 Output

hp0_data(6) P32 Output

hp0_data(5) P31 Output

hp0_data(4) P30 Output

hp0_data(3) P29 Output

hp0_data(2) M32 Output

hp0_data(1) N31 Output

hp0_data(0) N30 Output

Net Loc. Dir.

hp1_clk1 U29 Output

hp1_data(0) U33 Output

hp1_data(1) V32 Output

hp1_data(2) V31 Output

hp1_data(3) V29 Output

hp1_data(4) V30 Output

hp1_data(5) W33 Output

hp1_data(6) W31 Output

hp1_data(7) W30 Output

hp1_data(8) W29 Output

hp1_data(9) Y32 Output

hp1_data(10) Y30 Output

hp1_data(11) AA33 Output

hp1_data(12) Y29 Output

hp1_data(13) AA32 Output

hp1_data(14) AA31 Output

hp1_data(15) AA30 Output

Net Loc. Dir.

hp2_clk1 U3 Output

hp2_data(0) M2 Output

hp2_data(1) N4 Output

hp2_data(2) N3 Output

hp2_data(3) N2 Output

hp2_data(4) P5 Output

hp2_data(5) P4 Output

hp2_data(6) P3 Output

hp2_data(7) P2 Output

hp2_data(8) R5 Output

hp2_data(9) R4 Output

hp2_data(10) R3 Output

hp2_data(11) R1 Output

hp2_data(12) T4 Output

hp2_data(13) T5 Output

hp2_data(14) T3 Output

hp2_data(15) T2 Output

Net Loc. Dir.

hp3_clk1 U1 Output

hp3_data(0) U2 Output

hp3_data(1) U4 Output

hp3_data(2) V2 Output

hp3_data(3) V4 Output

hp3_data(4) V5 Output

hp3_data(5) V3 Output

hp3_data(6) W1 Output

hp3_data(7) W3 Output

hp3_data(8) W4 Output

hp3_data(9) W5 Output

hp3_data(10) Y3 Output

hp3_data(11) Y4 Output

hp3_data(12) AA1 Output

hp3_data(13) Y5 Output

hp3_data(14) AA3 Output

hp3_data(15) AA4 Output
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Net Loc. Dir.

liab0_io(0) C9 InOut

liab0_io(1) A9 InOut

liab0_io(2) C10 InOut

liab0_io(3) E11 InOut

liab0_io(4) D11 InOut

liab0_io(5) B10 InOut

liab0_io(6) C11 InOut

liab0_io(7) B11 InOut

liab0_io(8) D12 InOut

liab0_io(9) A11 InOut

liab0_io(10) E13 InOut

liab0_io(11) C12 InOut

liab0_io(12) D13 InOut

liab0_io(13) C13 InOut

liab0_io(14) E14 InOut

liab0_io(15) A13 InOut

Net Loc. Dir.

liab0_data(0) F3 InOut

liab0_data(1) F5 InOut

liab0_data(2) B3 InOut

liab0_data(3) F4 InOut

liab0_data(4) C1 InOut

liab0_data(5) G5 InOut

liab0_data(6) E3 InOut

liab0_data(7) D3 InOut

liab0_data(8) D2 InOut

liab0_data(9) G4 InOut

liab0_data(10) H5 InOut

liab0_data(11) E2 InOut

liab0_data(12) H4 InOut

liab0_data(13) G3 InOut

liab0_data(14) G1 InOut

liab0_data(15) J5 InOut

Net Loc. Dir.

liab0_addr(0) A2 Input

liab0_addr(1) D6 Input

liab0_addr(2) E7 Input

liab0_addr(3) A3 Input

liab0_addr(4) C5 Input

liab0_addr(5) B4 Input

liab0_addr(6) A4 Input

liab0_addr(7) D7 Input

liab0_addr(8) C6 Input

liab0_addr(9) B5 Input

liab0_n_cs0 A5 Input

liab0_n_cs1 E8 Input

liab0_n_cs2 D8 Input

liab0_n_iord C7 Input

liab0_n_iowr A6 Input

Net Loc. Dir.

liab0_ale B7 Input

liab0_pciclk D17 Input

liab0_irq0 A15 Output

liab0_irq1 C16 Output

liab0_irq2 E16 Output

liab0_rdy D16 InOut

liab0_n_bhe B16 Input

liab0_n_dbufoe B17 Input

liab0_n_iocs16 C17 Input



4 A PIN MAPPINGS

Net Loc. Dir.

liab1_io(0) G30 InOut

liab1_io(1) F29 InOut

liab1_io(2) D31 InOut

liab1_io(3) F30 InOut

liab1_io(4) C33 InOut

liab1_io(5) G29 InOut

liab1_io(6) E30 InOut

liab1_io(7) E31 InOut

liab1_io(8) D32 InOut

liab1_io(9) F31 InOut

liab1_io(10) H29 InOut

liab1_io(11) E32 InOut

liab1_io(12) E33 InOut

liab1_io(13) G31 InOut

liab1_io(14) F33 InOut

liab1_io(15) J29 InOut

Net Loc. Dir.

liab1_data(0) B26 InOut

liab1_data(1) C25 InOut

liab1_data(2) D24 InOut

liab1_data(3) B25 InOut

liab1_data(4) E23 InOut

liab1_data(5) A25 InOut

liab1_data(6) D23 InOut

liab1_data(7) B24 InOut

liab1_data(8) E22 InOut

liab1_data(9) C23 InOut

liab1_data(10) A23 InOut

liab1_data(11) D22 InOut

liab1_data(12) E21 InOut

liab1_data(13) B22 InOut

liab1_data(14) D21 InOut

liab1_data(15) C21 InOut

Net Loc. Dir.

liab1_addr(0) D30 Input

liab1_addr(1) E28 Input

liab1_addr(2) D29 Input

liab1_addr(3) D28 Input

liab1_addr(4) A31 Input

liab1_addr(5) E27 Input

liab1_addr(6) C29 Input

liab1_addr(7) B30 Input

liab1_addr(8) D27 Input

liab1_addr(9) E26 Input

liab1_n_cs0 B29 Input

liab1_n_cs1 C28 Input

liab1_n_cs2 D26 Input

liab1_n_iord C27 Input

liab1_n_iowd A27 Input

Net Loc. Dir.

liab1_ale E25 Input

liab1_irq0 B20 Output

liab1_irq1 E19 Output

liab1_irq2 D19 Output

liab1_rdy C19 InOut

liab1_n_bhe A19 Input

liab1_n_dbufoe D18 Input

liab1_n_iocs16 E18 Input

liab1_pciclk A17 Input
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Net Loc. Dir.

liab2_io(0) AJ23 InOut

liab2_io(1) AN26 InOut

liab2_io(2) AL24 InOut

liab2_io(3) AK23 InOut

liab2_io(4) AJ22 InOut

liab2_io(5) AL23 InOut

liab2_io(6) AM24 InOut

liab2_io(7) AK22 InOut

liab2_io(8) AM23 InOut

liab2_io(9) AJ21 InOut

liab2_io(10) AN23 InOut

liab2_io(11) AK21 InOut

liab2_io(12) AM22 InOut

liab2_io(13) AJ20 InOut

liab2_io(14) AL21 InOut

liab2_io(15) AN21 InOut

Net Loc. Dir.

liab2_data(0) AH33 InOut

liab2_data(1) AE29 InOut

liab2_data(2) AF30 InOut

liab2_data(3) AH32 InOut

liab2_data(4) AF29 InOut

liab2_data(5) AH31 InOut

liab2_data(6) AJ32 InOut

liab2_data(7) AG30 InOut

liab2_data(8) AK32 InOut

liab2_data(9) AJ31 InOut

liab2_data(10) AG29 InOut

liab2_data(11) AH30 InOut

liab2_data(12) AK31 InOut

liab2_data(13) AJ30 InOut

liab2_data(14) AH29 InOut

liab2_data(15) AL33 InOut

Net Loc. Dir.

liab2_addr(0) AJ27 Input

liab2_addr(1) AL28 Input

liab2_addr(2) AN31 Input

liab2_addr(3) AL29 Input

liab2_addr(4) AK27 Input

liab2_addr(5) AN28 Input

liab2_addr(6) AJ26 Input

liab2_addr(7) AM30 Input

liab2_addr(8) AM29 Input

liab2_addr(9) AK26 Input

liab2_n_cs0 AJ25 Input

liab2_n_cs1 AN29 Input

liab2_n_cs2 AK25 Input

liab2_n_rd AL26 Input

liab2_n_wr AL25 Input

Net Loc. Dir.

liab2_ale AJ24 Input

liab2_irq0 AM20 Output

liab2_irq1 AK19 Output

liab2_irq2 AL19 Output

liab2_rdy AN19 InOut

liab2_n_bhe AJ18 Input

liab2_n_dbufoe AK18 Input

liab2_n_iocs16 AL18 Input

liab2_pciclk AJ17 Input
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Net Loc. Dir.

liab3_io(0) AG2 InOut

liab3_io(1) AE4 InOut

liab3_io(2) AH1 InOut

liab3_io(3) AE5 InOut

liab3_io(4) AH3 InOut

liab3_io(5) AF4 InOut

liab3_io(6) AJ1 InOut

liab3_io(7) AJ2 InOut

liab3_io(8) AF5 InOut

liab3_io(9) AG4 InOut

liab3_io(10) AK2 InOut

liab3_io(11) AK3 InOut

liab3_io(12) AJ3 InOut

liab3_io(13) AG5 InOut

liab3_io(14) AL1 InOut

liab3_io(15) AH4 InOut

Net Loc. Dir.

liab3_data(0) AL9 InOut

liab3_data(1) AM9 InOut

liab3_data(2) AK10 InOut

liab3_data(3) AN9 InOut

liab3_data(4) AL10 InOut

liab3_data(5) AM10 InOut

liab3_data(6) AJ11 InOut

liab3_data(7) AL11 InOut

liab3_data(8) AJ12 InOut

liab3_data(9) AN11 InOut

liab3_data(10) AK12 InOut

liab3_data(11) AL12 InOut

liab3_data(12) AM12 InOut

liab3_data(13) AK13 InOut

liab3_data(14) AL13 InOut

liab3_data(15) AM13 InOut

Net Loc. Dir.

liab3_addr(0) AL4 Input

liab3_addr(1) AJ6 Input

liab3_addr(2) AK5 Input

liab3_addr(3) AN3 Input

liab3_addr(4) AL5 Input

liab3_addr(5) AJ7 Input

liab3_addr(6) AM4 Input

liab3_addr(7) AM5 Input

liab3_addr(8) AK6 Input

liab3_addr(9) AK7 Input

liab3_n_cs0 AL6 Input

liab3_n_cs1 AM6 Input

liab3_n_cs2 AN6 Input

liab3_n_rd AK9 Input

liab3_n_wr AL7 Input

Net Loc. Dir.

liab3_ale AJ8 Input

liab3_irq0 AK15 Output

liab3_irq1 AL15 Output

liab3_irq2 AM16 Output

liab3_rdy AL16 InOut

liab3_n_bhe AJ16 Input

liab3_n_dbufoe AK16 Input

liab3_n_iocs16 AN17 Input

liab3_pciclk AM17 Input
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And because I did not relate to the pin values, a floorplan for a BG-560 is
included here - suddenly the values in the previous listing makes sense....sort of...
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B PCB components

The mask used to place components on the upside of the PCB.
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C Cell generator - cell gen.c

#include <stdio.h>

#include <stdlib.h>

#define IO_CTRL 0x110

#define IO_DATA 0x112

#define CMD_START_CELL 0x0100

#define CMD_RECV 0x0101

typedef short int uint16; /* MUST be a 16-bit unsigned value! */

void to_bin(uint16 v, char *str, char bits) {

int j=0;

str += bits;

*str=’\0’;

for (j=0;j<bits;j++) {

str--;

if (v&0x0001)

*str=’1’;

else

*str=’0’;

v >>= 1;

}

}

/* update buffer with checksum */

void checksum(uint16* buffer) {

uint16 checksum=0;

int lp1;

for (lp1=0;lp1<255;lp1++) {

checksum ^= *buffer;

buffer++;

}

*buffer = checksum;

}

/* output a sequence transmitting a cell to the FPGA

* CMD_START_CELL -> [CTRL]

* cell -> [DATA]

* read [CTRL]

*/

void write_cell(uint16* buffer) {

int lp1;

char *mem = calloc(1,11);

char *dat = calloc(1,17);

to_bin(IO_CTRL,mem,10);

to_bin(CMD_START_CELL,dat,16);

printf("w 101 %s %s\n",mem,dat);

to_bin(IO_DATA,mem,10);

for (lp1=0;lp1<256;lp1++) {

to_bin(*buffer,dat,16);

printf("w 101 %s %s\n",mem,dat);

buffer++;

}

to_bin(IO_CTRL,mem,10);

printf("r 101 %s\n",mem);
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free(mem);

free(dat);

}

int main(int argc, char** argv) {

/* a buffer containing a cell */

uint16 *buffer = calloc(sizeof(uint16),256);

int lp1;

char* cmd;

if (sizeof(uint16)!=2) {

printf("Compile error - sizeof(uint16)=%d and not 2 as it is supposed to!\n",

sizeof(uint16));

return 1;

}

srand(time());

argv++;

while (cmd = *argv) {

argv++;

memset(buffer,0,512);

printf("# %s\n",cmd);

if (strcmp("rd",cmd)==0) {

char mem[11];

char dat[17];

to_bin(IO_CTRL,mem,10);

to_bin(CMD_RECV,dat,16);

printf("w 101 %s %s\n",mem,dat);

to_bin(IO_DATA,mem,10);

for (lp1=0;lp1<256;lp1++)

printf("r 101 %s\n",mem);

} else

if (strcmp("empty",cmd)==0) {

buffer[0]=0x0000;

checksum(buffer);

write_cell(buffer);

} else

if (strcmp("hb",cmd)==0) {

buffer[0]=0x1000;

checksum(buffer);

write_cell(buffer);

} else

if (strcmp("tops",cmd)==0) {

buffer[0]=0x305a;

for (lp1=1;lp1<256;lp1++)

buffer[lp1]=rand()&0xffff;

checksum(buffer);

write_cell(buffer);

} else

if (strcmp("drop",cmd)==0) {

buffer[0]=0x40aa;

checksum(buffer);
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write_cell(buffer);

} else

if (strcmp("accept",cmd)==0) {

buffer[0]=0x505a;

checksum(buffer);

write_cell(buffer);

} else

if (strcmp("sdmp",cmd)==0) {

buffer[0]=0x9001;

for (lp1=1;lp1<256;lp1++)

buffer[lp1]=rand()&0xffff;

checksum(buffer);

write_cell(buffer);

}

}

}
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D Timing reports

An example of a timing report from LeonardoSpectrum. This is the output from LiAB_testinout
which states that 129MHz is max speed and critical path seems to be the address match
to bus driver.

Clock Frequency Report

Clock : Frequency

------------------------------------

clk : N/A

clk_int : 129.4 MHz

Critical Path Report

Critical path #1, (path slack = 2.3):

NAME GATE ARRIVAL LOAD

-------------------------------------------------------------------------------------------------------

liab0_gpa(8)/ 0.00 0.00 up 1.02

liab0_gpa_ibuf(8)/I IBUF 0.00 0.00 up 0.00

liab0_gpa_ibuf(8)/O IBUF 1.03 1.03 up 1.16

liab0_notri/nx162/I3 LUT4 0.00 1.03 up 1.02

liab0_notri/nx162/O LUT4 0.74 1.77 up 1.02

liab0_notri/is_data/I3 LUT4 0.00 1.77 up 1.16

liab0_notri/is_data/O LUT4 0.79 2.55 up 1.16

liab0_nx20/I1 LUT2 0.00 2.55 up 1.16

liab0_nx20/O LUT2 0.79 3.34 up 1.16

nx364/I0 LUT1 0.00 3.34 up 3.12

nx364/O LUT1 1.52 4.86 up 3.12

liab0_ix1519/T BUFT 0.00 4.86 up 0.00

liab0_ix1523/O BUFT 0.75 5.61 up 1.02

liab0_gpd_bdbuf(15)/I IOBUF 0.00 5.61 up 0.00

liab0_gpd_bdbuf(15)/IO IOBUF 2.12 7.73 up 1.02

liab0_gpd(15)/ 0.00 7.73 up 0.00

data arrival time 7.73

data required time (default specified) 10.00

-------------------------------------------------------------------------------------------------------

data required time 10.00

data arrival time 7.73

----------

slack 2.27

-------------------------------------------------------------------------------------------------------

And the corresponding report from Xilinx ISE:

--------------------------------------------------------------------------------

Release 6.2.03i Trace G.28

Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.

C:/Xilinx/bin/nt/trce.exe -intstyle ise -e 3 -l 3 -xml LiAB_testinout

LiAB_testinout.ncd -o LiAB_testinout.twr LiAB_testinout.pcf

Design file: LiAB_testinout.ncd

Physical constraint file: LiAB_testinout.pcf

Device,speed: xcv812e,-8 (PRODUCTION 1.69 2003-12-13)

Report level: error report

Environment Variable Effect

-------------------- ------

NONE No environment variables were set

--------------------------------------------------------------------------------

INFO:Timing:2752 - To get complete path coverage, use the unconstrained paths

option. All paths that are not constrained will be reported in the

unconstrained paths section(s) of the report.

================================================================================

Timing constraint: TS_clk_0 = PERIOD TIMEGRP "xmplr_clk" 10 nS HIGH 50.000000 % ;

9159 items analyzed, 0 timing errors detected. (0 setup errors, 0 hold errors)

Minimum period is 9.865ns.

--------------------------------------------------------------------------------

All constraints were met.

Data Sheet report:

-----------------

All values displayed in nanoseconds (ns)

Clock to Setup on destination clock clk

---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|

Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

---------------+---------+---------+---------+---------+

clk | 9.865| | | |

---------------+---------+---------+---------+---------+

Timing summary:

---------------

Timing errors: 0 Score: 0

Constraints cover 9159 paths, 0 nets, and 4023 connections

Design statistics:
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Minimum period: 9.865ns (Maximum frequency: 101.368MHz)

Analysis completed Mon Apr 11 10:37:14 2005

--------------------------------------------------------------------------------

Peak Memory Usage: 83 MB

Where you note that LS was a bit optimistic. What you will also note is that
Xilinx will not output a critical path unless a timing violation occured, in which
case it will dump only a few of the violating paths.

Using the area report from LS, we get an idea of the size of the design:

*******************************************************

Cell: LiAB_testinout View: structure Library: work

*******************************************************

Cell Library References Total Area

BUFGP xcve 1 x 1 1 BUFGP

BUFT xcve 32 x 1 32 LUTs

FDC xcve 24 x 1 24 Dffs or Latches

GND xcve 1 x 1 1 GND

IBUF xcve 17 x 1 17 IBUF

IOBUF xcve 16 x 1 16 IOBUF

LUT1 xcve 4 x 1 4 Function Generators

LUT1_L xcve 8 x 1 8 Function Generators

LUT2 xcve 3 x 1 3 Function Generators

LUT2_L xcve 16 x 1 16 Function Generators

LUT4 xcve 4 x 1 4 Function Generators

LiAB_Interface_0_0100010000_0100010010_101_notri work 1 x 24 24 MUXF5

24 24 RAMB4_S16_S16

356 356 Function Generators

30 30 XORCY

44 44 MUX CARRYs

28 28 MULT_AND

270 270 Dffs or Latches

384 384 LUTs

3 3 VCC

3 3 GND

339 339 gates

MUXCY_L xcve 22 x 1 22 MUX CARRYs

OBUF xcve 88 x 1 88 OBUF

VCC xcve 1 x 1 1 VCC

XORCY xcve 24 x 1 24 XORCY

Number of ports : 124

Number of nets : 320

Number of instances : 262

Number of references to this view : 0

Total accumulated area :

Number of BUFGP : 1

Number of Dffs or Latches : 294

Number of Function Generators : 391

Number of GND : 4

Number of IBUF : 17

Number of IOBUF : 16

Number of LUTs : 416

Number of MULT_AND : 28

Number of MUX CARRYs : 66

Number of MUXF5 : 24

Number of OBUF : 88

Number of RAMB4_S16_S16 : 24

Number of VCC : 4

Number of XORCY : 54

Number of gates : 370

Number of accumulated instances : 1427

***********************************************

Device Utilization for v812ebg560

***********************************************

Resource Used Avail Utilization

-----------------------------------------------

IOs 123 404 30.45%

Function Generators 391 18816 2.08%

CLB Slices 196 9408 2.08%

Dffs or Latches 294 20028 1.47%

-----------------------------------------------
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F CD-ROM with sources

The CD-ROM contains:

� /rip_pins/

CSV and UCF files

� /rip_fpga/

VHDL code for the design described in section 4

� /pcb_adders/

A very simple design consisting of an adder outputted to the HP-connectors
to see if the FPGA can be programmed. There was also some blinkenlichten
that did not work.

� /pcb_liab0/

The LiAB_testinout entity synthesized and PaR. Contains a Xilinx project
ready to load and program.

� /pcb_liab0quar

The LiAB_quartest entity synthesized and PaR. Contains a Xilinx project
ready to load and program.

� /pcb_reliplan_8

Synthesized version of Reliplan with 8 entries in the quarqueue. Barely meets
timing req.

� /pcb_reliplan_16

ynthesized version of Reliplan with 8 entries in the quarqueue. Does not meet
timing req.


